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Abstract

Three ceramic pastes based on alumina with differ-
ent binder systems were characterised using physi-
cally based equations and the pressure drop
measured as they passed through an experimental
honeycomb die. Using an additive approach the
pressure drop through the honeycomb die was pre-
dicted from the paste parameters derived by the
characterisation method and the results compared
with the experimentally determined pressure losses.
In simple pastes based on a clay—starch binder sys-
tem, where their pressure—velocity relationships
were near-linear and the die entry velocity depen-
dence was small, the predicted and experimental
values were in reasonable agreement (+ 10%%) but
in more complex systems using polymer solution
binders the fit was less accurate (10 to —45%) for
the best of the four models evaluated. This was
attributed to the divergent flow in the die on pas-
sage from the die holes to slots which at present
cannot be modelled using the method of analysis
adopted. © 1996 Elsevier Science Limited.

Notation

Open area of holes (m°)
A, Open area of slots (m?)

D, Diameter of holes (m?)

D, Barrel diameter (m)

D, Diameter of a circle just touching the outer
most holes [D,] (m)

L, Length of holes (m)

L, Length of slot (m)

n Number of holes

P Total pressure drop in system (Pa)

P, Pressure drop into holes (Pa)

Py Pressure drop into holes via intermediate
equation (Pa)

P-  Pressure drop through holes (Pa)

Py Pressure drop hole-slot transition [4,/4,] (Pa)
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Pressure drop hole-slot transition [4,/modi-
fied 4] (Pa)

Pressure drop through slots (Pa)

Pressure drop for convergent flow in round
dies, die entry (Pa)

Pressure drop for parallel flow in round dies,
die land (Pa)

Q  Volumetric flow rate (m?/s)

S, Slot width (m)

V' Velocity of the extrudate (m/s)

V, Barrel velocity (m/s)

Vi,  Velocity of the paste passing D, (m/s)

V, Velocity of paste in die holes (m/s)

a  Velocity factor of bulk yield stress, bulk
velocity factor (m=1) (Pasm™)

a,  Velocity factor of bulk yield stress, bulk veloc-
ity factor (m = 1) (Pa [s m™']™)

B Velocity factor of wall shear stress, wall veloc-
ity factor (n=1) (Pa s m™)

B,  Velocity factor of wall shear stress, wall veloc-
ity factor (n # 1) (Pa [s m™']")

o, Bulk yield stress at low viscosity; initial bulk
stress (Pa)

T,  Initial wall shear stress of paste: initial wall
shear stress (Pa)

Introduction

Complex ‘honeycomb’ structures' are now rou-
tinely extruded for ceramic catalyst supports and
other applications. Many millions of support
structures are produced for the automotive indus-
try annually. The market is expanding as legislation
dictates the use of such devices throughout the
world. Honeycomb structured particulate materi-
als are finding applications in other aspects of gas
cleaning and structural products. In the basic die
design for these structures, the paste enters the die
through an array of geometrically placed holes
which intercept a network of slots which give the
final shape.” A pressure drop is developed as the
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paste is forced through the die, the magnitude of
which will depend on, for example, the paste, the
number of cells per unit area and the wall thick-
ness of the honeycomb. The pressure drop in the
dies is of interest to plant operators and designers.
Here a simple approach to modelling such dies is
considered.

Experimental Procedure

Paste formulation

Three types of pastes were prepared for the char-
acterisation of flow through a model honeycomb
die.

Type I

In this paste three a-alumina powders with mean
equivalent spherical diameters of 29, 10 and 29 um
(measured by Sedigraph X-ray sedimentometry,
F1500, F400, F280, Universal Ceramic Materials,
UK) and in the ratio 1:1:1 were mixed with a
binder containing 15-8 wt% Wyoming bentonite
clay, 158 wt% starch and 684 wt% distilled
water.

Type 11

A fine calcined alumina, ds, 0-50 um (RA 107 LS,
Baco, UK) was mixed with a 4-0 wt% solution
of hydroxypropylmethyl-cellulose (HPMC) (Grade
B2/15, Courtaulds Chemicals, UK).

Type 111
These pastes had the same formulation as Type 11
with glycerol added at = 0-5 wt% to the binder
solution.

Pastes of different rheology were prepared by
varying the amount of binder. The level of mois-
ture was determined for each of the eleven pastes
produced by taking the average moisture calcu-
lated from the weight loss at 110°C in three speci-
mens of approximately 20 g each, Table 1. In all
cases the powders were premixed for 5 min in a
planetary mixer (Kenwood, UK), then the water
was added and mixed for 40 min in a high-shear
kneader (LUK 3I1I-2Vak, Werner and Pfleiderer,
D); the mixer was water-cooled to 15°C.

Table 1. Paste formulation (numbers in parentheses refer to
paste number)

Type 1 Type 11 Type 1T
Moisture (wt%)  13-39 (1) 18-43 (6) 1742 (9)
14-05 (2) 18-98 (1) 17-90 (10)
14-06 (3) 19-54 (8) 18:36 (11)
14.72 (4)
15-46 (5)

Paste characterisation

The pressure drop, P, in pastes during extrusion
through circular dies can be characterised using
equations proposed by Benbow er al.* of the gen-
eral form

D,
P:P|+P2:2(0-0+ale)1n E

+ 41y + B V™) L (1)
5l

where P, and P, are the die entry and die land
pressure drops, respectively, D, is the barrel diame-
ter, D is the die diameter, L is the die land length
and V is the velocity of the extrudate. The six
paste parameters which characterise the pastes’
rheology are: oy, the bulk yield stress of the paste,
ay, the velocity factor of the bulk yield stress when
m # 1, m, the bulk velocity exponent, 7, the initial
wall shear stress, B,, the velocity factor of the wall
shear stress when #n # 1 and », the wall velocity
exponent. When m and » are 1, eqn (1) reduces to
a four-paste parameter fit

P=20c, +aV)ln [%9} + 4(1y + BV) (%) )

where « and B replace a; and B, and have differ-
ent units.

All paste formulations were characterised using
the four-parameter model, eqn (2) and in addition
the type II and III pastes were analysed using the
six-parameter fit, eqn (1), by passing them
through dies of 3 mm diameter, /D ratios 1, 8
and 16 and at extrudate velocities of 0-001, 0-002,
0-005, 0-011, 0:021 and 0-053 m/s using a ram
extruder with a barrel diameter of 25-4 mm. Pres-
sure was recorded on the ram using a 20 kN load
cell.

All the calculations were carried out by hand in
this exercise, though computer programs were writ-
ten for automated calculations. This dual approach
was used because of the wish to evaluate the sim-
plicity of the model and the degree of fit between
models at all stages of the process.

In the Type I pastes a good agreement was
obtained using the four-parameter characterisation.
However, as shown in Fig. 1, using eqn (2) was
inadequate for types II and III at intermediate
extrudate velocities. In these materials the best fit
was obtained using the six-parameter characterisa-
tion, eqn (1), which was resolved by extrapolating
P — L/D curves to zero L/D giving P,. The follow-
ing equation can therefore be written

P/[21n (DyD)] - 0, = a, V™ 3)
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Fig. 1. Pressure-velocity relationships for a typical paste [II(8)].

which gives in In-In form, a straight line from
which «a, and m can be derived, o, being dertved
from a plot of P,/2In(DyD) versus V. By subtract-
ing P, from P to give P, a similar approach was
used to resolve 7, B, and n. Some difficulties were
encountered in interpreting In-In plots derived
from eqn (3) as straight lines were not produced in
all cases. It is possible that eqns (1) and (2) require
refinement to give better agreement of the data
across the whole extrudate velocity range. The
difficulties found in the fitting routine are reflected
in the data, for example a; is high in paste I1(7).
As expected the values of the parameters fall
with increasing moisture content. Figure 2 shows
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Fig. 2. Die entry yield stress plotted against moisture content.
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the relationship for o, for the three paste types.
The determined paste parameters are given in
Table 2 for all the pastes examined.

Honeycomb Extrusion

All the pastes were passed through a model hon-
eycomb die (Figs 3 and 4) at various extrudate
velocities and, the required forces on the ram
recorded. The results converted to pressure are
given in Table 3. The pressure drop falls with in-
creasing moisture in each paste type following
similar trends to oy in Fig. 2.

Table 2. Paste parameters

Paste oy a o m Ty B B, n
no. (MPa) (MPasm') (MPafs m™]") (MPa) (MPasm') (MPafsm™']")
Four-parameter fit

I(1) 0-39 0-49 — — 0-034 0-59 — —
12) 0-35 0-27 — — 0-030 0-49 — —
1(3) 0-31 0-45 — — 0-025 0-47 — —
1(4) 0-24 0-81 — — 0-021 0-40 — —
I(5) 0-23 0-00 — — 0-017 0-34 — —
11(6) 1-37 10-56 — — 0-058 6-98 — —
1(7) 0-80 674 — — 0-053 3.77 — —
11(8) 0-46 346 — — 0-030 2:49 — —
111(9) 1-41 12-58 — — 0-048 7-68 — —
I(10) 0-76 6-06 — — 0-050 4-89 — —
ITI(11) 0-56 4.04 — — 0-038 4-43 — —
Six-parameter fit

[1(6) 1-38 — 0-71 0-15 0-057 — 2-18 0-60
11(7) 0-76 — 239 0-60 0-053 — 1-08 0-57
11(8) 0-44 — 0-74 0-50 0-031 — 0-59 0-51
111(9) 1-40 — 1-31 0-35 0-048 — 1-48 0.43
111(10) 0-76 — 0-76 0-48 0-050 — 125 0.50
I(11) 0-54 — 0-57 0-43 0-039 — 0-67 0-44
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Fig. 3. The experimental honeycomb die and an extrudate
produced from it.
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Fig. 4. Schematic cross-section of experimental honeycomb
die, Py is the total pressure drop through the die, V4 is the
ram velocity, Q is the volumetric flow rate, D, is the diameter
of a circle which just touches the outermost holes of the back
plate, V) is the velocity of the extrudate as it passes D,, D, is
the die hole diameter, L, is the length of the die holes, V> is
the velocity of the paste in the die holes, L, is the length
of the slots, S, is the width of the slots, S is the side length
of the extrudate, V is the velocity of the extrudate in the slots
and at the exit of the die.

Model Development

It should be possible by developing geometrically
corrected equations based on eqns (1) and (2) to
predict the pressure drop through the die based on
the paste parameters given in Table 2. The die can
be broken down into four regions: the entry into
the multi-holes, flow in the multi-holes, the transi-
tion from holes to slots and flow in the slots. The
dimensions of the die and the notation for the
various components are given in Fig. 4. Flow into
the multi-holes from the barrel can be modelled in
a single equation, P,, (the derivation of which is
given by Benbow et al.,* and Benbow and Bridg-
water”) or can be split into two components where
the flow into a large die of diameter equal to D, is
first calculated, related to P, in eqn (1) followed

Table 3. Experimental honeycomb pressure drops (MPa)

Exrtrudate velocity

Paste 0-0016 0-0078 0-014 0021
no. m/s m/s /s m/s

IH 2-29 2-49 262 268
I 1-87 1-99 201 2-11
I(3) 1-60 1-74 1-78 1-84
I(4) 1-40 1-56 1-66 174
I(5) 1-18 1-24 1-34 1-40
T1(6) 11-74 14-47 15-59 16:70
(7 6-04 7-66 8-64 9-20
(8 320 4-16 4-80 505
HI(9) 9-89 12-57 13-52 14-60
1I(10) 5-60 7-36 819 9.04

ITI(LT) 3-77 4.97 5-59 592

by the flow into the multi-hole plate, Pz. The
equations for these two alternatives are

pa=afos 252 ][ 2
- Oy n
A " #DN| \ DN

(four parameters) (4a)
40 } D,
P,=2 + o —— | 1In|——
A {U" al(wDﬁN}' H[Dh\fﬁ)
(six parameters) (4b)

adQ ]

D,
P, = 2o, + aV)In | -2 +2\:cr+ :
B (o 1) (D) 0 7DIN

1

D, ,
In ; four parameters Sa
( DN J (four p ers)  (5a)

D, 40 T
Py = 2o+, V)In [5_13 + 2[% * a‘(wDi T }

D
In (m«] (six parameters) (5b)

where N 1s the number of die holes. The flow in
the multiple holes* is given by

B4Q (L.}
Pe = 41:1-0 + b mjl (Bl} (four parameters) (6a)

>
h

7Dy N
4 L,
PC:A{WB} (wDQf-;N”(EJ

(six parameters) (6b)
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The pressure drop between hole and slot can be
calculated in two alternative ways. The change in
total open area from holes to slots can be used
to develop an equation, Pp, or the change in area
from the holes to the area of slot exposed down
the holes can be used to give an alternative equa-
tion, Pg* Fig. 5. These two possibilities are
resolved by the following equations

Ay

Py = (o + aV)in (A ) (four parameters) (7a)

8

Ay,

Py = (0y + aV")n [A j (six parameters) (7b)

s

P = (gy + a¥)
Ay

In | 2D, - S,} S, + S2INN - 2P
+[1.5{Dy - S} S, + SZIVN - 24
+ [{Dh - Sw} Sw + S\%/ ]4

(four parameters) (8a)

Pg = (op + o V™)

Ay

In | 2(D,-8,} S, + SZINN - 2
+[1.5{Dy -~ 85,} S, + SZIVN - 24
+ [{Dh - Sw} Sw + Sv% ]4

(six parameters) (8b)

where A, and A4, are the open areas of the holes
and slots respectively. The final contribution to
pressure drop is the flow through the slots, P,
which is given by

L,

M
Pe =47 + BV) [ y

J(four parameters) (9a)

s

L,

M
P =4(ry + BV (T] (six parameters) (9b)

s

where M is the perimeter length of the slots. Four
models are thus constructed here by combining
eqns (4)—(9) as follows:

la = Py + P-+ Pp + Pp,
b= Py + Po + Py + Pg,
2a = P, + Po+ Pg + P,
2b = Py + P + Pp + P

4

N

4

i
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Fig. 5. Schematic representation of the areas used in the cal-
culation of the pressure drop in the holes-to-slots transition.

Results and Discussion of the Honeycomb
Model Fit

All the predicted values for the pastes examined
are given in Table 4 as a percentage of the experi-
mental values given in Table 3. Figure 6 shows the
fit of the four models (1a, 1b, 2a and 2b) to the
experimental data points for pastes I(2) and II(8),
using paste parameters derived by four- and six-
parameter characterisation, respectively. It can be
seen that in both cases models of form 2, incorpo-
rating eqn (8) agree with the experimental points
most closely. It is to be expected that models of
form 1, incorporating eqn (7) will yield lower val-
ues because, if the holes and the slots had the
same open area the predicted pressure drop would
be zero. This is improbable as some resistance
must occur in the transition from holes to slots.
The differences between the a and b models, ie.
between P, and Py are small in the Type I pastes
showing that the models are largely interchange-
able. In the Type II and III pastes eqn (4) tends to
give greater pressure drops than eqn (5). This can
be attributed to some deficiency in the models
when the materials show a strong velocity depen-
dence.

It is clear from Figs 6 and 7 that pastes of Type
I are generally modelled well by the eqns (4)-(9)
across the whole range of the experimental veloci-
ties, ranging between +10% and -10% of the
experimental value for model 2a. For this same
model in Type Il and III pastes the predicted
values are consistently low, typically between ~10
and —45%.

The figures in Table 4 show that, in the Type
I and Type III pastes, better estimates of the
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Fig. 6. Pressure drop in honeycomb extrusion, predicted and
experimental for pastes 1(2) and II(8).
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Fig. 7. Predicted pressure drop as a percentage of the exper-
imental value at different extrudate velocities.

experimental pressure drops were obtained partic-
ularly at low velocities, by using the six-parameter
equations. The differences in fit between the vari-
ous paste types can only be attributable to the
differences in the rheology of the pastes as the
honeycomb models are consistent in all cases. In
pastes of Type I, a is generally small and there is
a linear relationship between P and V for a given
L/D. It would appear that under these circum-
stances the shortcomings of the honeycomb mod-
els presented are masked. Where the pastes show
a marked and non-linear dependence on velocity
in both convergent and laminar flow the model
does not correlate exactly with the experimentally
observed pressure drop. It appears that the major
contributing factor to this underestimation is the
spreading which must occur after the transfer
from the holes to the slots before the streams fully

unite, giving the honeycomb structure. This diver-
gent flow requires work to be done, but as yet the
models describing such flow in terms of the paste
flow parameters used here are only now being
developed.® A further alternative solution could
be to use a ‘universal’ approach’ based on the
model concept. However, in this system the rela-
tionships for multi-hole and complex geometry
have not been evaluated. Thus the present models
are only applicable for specific rheologies if accu-
rate pressure drop predictions are required. How-
ever, the models may be applicable to other pastes
in their current form if the errors are considered
systematic for that particular paste system.

Conclusion

Paste flow in honeycomb dies can be modelled
with reasonable accuracy for some paste types
where the flow is simple and the velocity depen-
dence in convergent flow is small. The flow of
more complex pastes is less predictable and this is
attributed to a paste divergent term at the hole to
slot transition.
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